Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Research Highlights: Flammability of wildland fuels is a key factor influencing risk-based decisions related to preparedness, response, and safety in Alaska. However, without effective measures of current and expected flammability, the expected likelihood of active and problematic wildfires in the future is difficult to assess and prepare for. This study evaluates the effectiveness of diverse indices to capture high-risk fires. Indicators of drought and atmospheric drivers are assessed along with the operational Canadian Forest Fire Danger Rating System (CFFDRS). Background and Objectives: In this study, 13 different indicators of atmospheric conditions, fuel moisture, and flammability are compared to determine how effective each is at identifying thresholds and trends for significant wildfire activity. Materials and Methods: Flammability indices are compared with remote sensing characterizations that identify where and when fire activity has occurred. Results: Among these flammability indicators, conventional tools calibrated to wildfire thresholds (Duff Moisture Code (DMC) and Buildup Index (BUI)), as well as measures of atmospheric forcing (Vapor Pressure Deficit (VPD)), performed best at representing the conditions favoring initiation and size of significant wildfire events. Conventional assessments of seasonal severity and overall landscape flammability using DMC and BUI can be continued with confidence. Fire models that incorporate BUI in overall fire potential and fire behavior assessments are likely to produce effective results throughout boreal landscapes in Alaska. One novel result is the effectiveness of VPD throughout the state, making it a potential alternative to FFMC among the short-lag/1-day indices. Conclusions: This study demonstrates the societal value of research that joins new academic research results with operational needs. Developing the framework to do this more effectively will bring science to action with a shorter lag time, which is critical as we face growing challenges from a changing climate.more » « less
- 
            null (Ed.)The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unusual and consequential. Firefighting operations had to be extended by a month in 2019 due to the extreme conditions of hot summer temperature and prolonged drought. The ongoing fires created poor air quality in the region containing most of Alaska’s population, leading to substantial impacts to public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s main goals are to place the 2019 season into historical context, provide an attribution analysis, and assess future changes in wildfire risk in the region. The primary tools are meteorological observations and climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire season in Southcentral Alaska included the hottest and driest June–August season over the 1979–2019 period. The LENS simulation analysis suggests that the anthropogenic signal of increased fire risk had not yet emerged in 2019 because of the CESM’s internal variability, but that the anthropogenic signal will emerge by the 2040–2080 period. The effect of warming temperatures dominates the effect of enhanced precipitation in the trend towards increased fire risk.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
